Naoki HIRAIWA

Email: hiraiwa.naoki.978 {at} s.kyushu-u.ac.jp

Website: https://naokihiraiwa.com/en/

EDUCATION

Kyushu University, Fukuoka, Japan

Advisor: Prof. Mai Bando and Prof. Shinji Hokamoto

Ph.D. Student, Apr. 2022 - Mar. 2025 (expected)

• Visiting Scholar at University of Colorado Boulder, Sep. 2023 - Aug. 2024

M.Eng. in Aeronautics and Astronautics, 2022

GPA 4.00/4.00

• Thesis: "Analysis of Ballistic Transfer Based on Lobe Dynamics"

B.Eng. in Aeronautics and Astronautics, 2020

GPA 3.78/4.00

• Thesis: "Analysis of Orbital Dynamics in the Binary Asteroid System Based on Center Manifold Theory" (in Japanese)

RESEARCH EXPERIENCE

Trajectory Design and Optimization Based on Lobe Dynamics

Apr. 2022 - Current

Doctoral Thesis Research, Kyushu University, Hokkaido University, and Universidade Federal do Rio de Janeiro

- Lobe dynamics can reveal phase space transport of chaotic trajectories.
- Generating chaotic low-energy transfer trajectories in cislunar space based on lobe dynamics

Low-Thrust Trajectory Design with Convex Optimization

Aug. 2021 - Current

Kyushu University

- Designing halo-to-NRHO low-thrust optimal transfer trajectories via successive convex optimization
- Constructing initial guesses from halo orbits based on beam search

Analysis of Chaotic Trajectories Based on Lobe Dynamics

Feb. 2021 - Mar. 2022

Master's Thesis Research, Kyushu University

- Lobe dynamics is used to study phase space transport in chaotic systems such as CR3BP.
- Apply lobe dynamics to trajectory design to leverage chaotic trajectories in the system

Trajectory Design Based on Center Manifold Theory

Apr. 2019 - Mar. 2023

Bachelor's Thesis Research, Kyushu University

- Extended the trajectory design method to remove the symmetry assumption and add the perturbation terms
- · Computed quasi-periodic orbits successfully in a binary asteroid system

PUBLICATIONS

Peer-reviewed Journal Publications

First author

- 1. <u>N. Hiraiwa</u>, M. Bando, I. Nisoli, and Y. Sato: "Designing robust trajectories by lobe dynamics in low-dimensional Hamiltonian systems," Physical Review Research, Vol. 6, L022046, 2024.
- 2. <u>N. Hiraiwa</u>, M. Bando, and S. Hokamoto: "Halo-to-Halo Low-Thrust Transfer via Successive Convex Optimization with Intermediate Orbit Design," *Journal of Evolving Space Activities*, Vol. 1, Article No. 48, 2023.
- 3. N. Hiraiwa, M. Bando, and S. Hokamoto: "Trajectory Design in Irregular Gravitational Fields Based on Center Manifold Theory," *Journal of Guidance, Control, and Dynamics*, Vol. 46, No. 8, pp. 1637–1648, 2023.

Co-author

- 1. S. Yamaguchi, N. Hiraiwa, M. Bando, S. Hokamoto, D. B. Henry, and D. J. Scheeres: "Trajectory Design for Awaiting Comets on Invariant Manifolds with Optimal Control," *Astrodynamics*. (Accepted)
- 2. K. Ikeda, N. Hiraiwa, M. Bando, and S. Hokamoto: "Design of Low-Energy Transfer Trajectories from Jupiter to Europa with Ballistic Transfer," *Journal of Evolving Space Activities*, Vol. 1, Article No. 35, 2023.

Conference Proceedings

First author

- 1. N. Hiraiwa, M. Bando, and S. Hokamoto: "Extending Earth–Moon Transfer Based on Lobe Dynamics into the Restricted Four-Body Problem," 25-320, 35th AAS/AIAA Space Flight Mechanics Meeting, Jan. 2025.
- 2. <u>N. Hiraiwa</u>, M. Bando, and S. Hokamoto: "Design of Earth–Moon Low-Energy Transfers Based on Lobe Dynamics" (in Japanese), 4J07, 68th Space Sciences and Technology Conference, Nov. 2024.
- 3. N. Hiraiwa, D. B. Henry, D. J. Scheeres, and M. Bando: "Design of Minimum-Time Low-Thrust Transfer between Quasi-Periodic Orbits," C1.4.8, 75th International Astronautical Congress, Oct. 2024.
- 4. <u>N. Hiraiwa</u>, D. B. Henry, M. Bando, and D. J. Scheeres: "Analysis of Dynamical Structures in a Three-Dimensional Volume-Preserving Map," 24-239, *AAS/AIAA Astrodynamics Specialist Conference*, Aug. 2024.
- 5. N. Hiraiwa, M. Bando, and S. Hokamoto: "Analysis of Transfer Trajectories in Cislunar Space Using Sequences of Lobe Dynamics," C1.9.2, 74th International Astronautical Congress, Oct. 2023.
- 6. <u>N. Hiraiwa</u>, M. Bando, and S. Hokamoto: "Design of Optimal Low-Thrust Transfer Trajectory for Halo Orbits via Convex Optimization" (in Japanese), 3L05, 66th Space Sciences and Technology Conference, Nov. 2022.
- 7. N. Hiraiwa, M. Bando, and S. Hokamoto: "Design of Optimal Low-Thrust Orbit-to-Orbit Transfers via Convex Approach," C1.3.6, 73rd International Astronautical Congress, Sep. 2022.
- 8. N. Hiraiwa, M. Bando, and S. Hokamoto: "Halo-to-Halo Low-Thrust Transfer via Successive Convex Optimization with Intermediate Orbit Design," 33rd International Symposium on Space Technology and Science, 2022-d-58, Mar. 2022.
- 9. N. Hiraiwa, M. Bando, and S. Hokamoto: "Analysis of Ballistic Escape Based on Lobe dynamics," C1.7.10, 72nd International Astronautical Congress, Oct. 2021.
- 10. N. Hiraiwa, M. Bando, and S. Hokamoto: "Trajectory Design in the Didymos System Based on the Center Manifold Theory" (in Japanese), 4M10, 64th Space Sciences and Technology Conference, Oct. 2020.
- 11. N. Hiraiwa, M. Bando, and S. Hokamoto: "Trajectory Design in the Vicinity of 65803 Didymos Based on the Center Manifold Theory," 20-593, AAS/AIAA Astrodynamics Specialist Conference, Aug. 2020. (Published in Advances in Astronautical Sciences, 175:4849-4866, 2021)

Co-author

- 1. Y. Hayashi, N. Hiraiwa, M. Bando, and S. Hokamoto: "Station-Keeping for Earth–Moon Periodic Orbit with Solar Sail based on the Orbit-Attitude Coupled Model," 25-371, 35th AAS/AIAA Space Flight Mechanics Meeting, Jan. 2025.
- 2. S. Yamaguchi, N. Hiraiwa, M. Bando, and S. Hokamoto: "Design of Parking Trajectories to Comets Leveraging Invariant Manifolds with Low Thrust" (in Japanese), 2F02, 67th Space Sciences and Technology Conference, Oct. 2023.
- 3. A. Chikusa, N. Hiraiwa, M. Bando, and S. Hokamoto: "Guidance and Control System for Mars Aerocapture Considering Uncertainties" (in Japanese), 1D16, 67th Space Sciences and Technology Conference, Oct. 2023.
- 4. S. Hirayama, N. Hiraiwa, M. Bando, and S. Hokamoto: "Optimal Trajectory Design by Adam under Stochastic Disturbing Acceleration," C1.7.2, 74th International Astronautical Congress, Oct. 2023.
- N. Pushparaj, N. Hiraiwa, and M. Bando: "Optimal Transfer Trajectories between Relative Quasi-Satellite Orbits," C1.6.10, 74th International Astronautical Congress, Oct. 2023.
- 6. S. Yamaguchi, N. Hiraiwa, M. Bando, and S. Hokamoto: "Mission Strategy to Await Comets by Leveraging Manifolds and Low Thrust," C1.6.6, 74th International Astronautical Congress, Oct. 2023.
- 7. A. Chikusa, N. Hiraiwa, M. Bando, and S. Hokamoto: "Guidance and Control Algorithm for Mars Aerospace

- Considering Uncertainties," C1.3.10, 74th International Astronautical Congress, Oct. 2023.
- 8. S. Hirayama, N. Hiraiwa, M. Bando, and S. Hokamoto: "Optimal Transfer by Stochastic Gradient Descent Algorithm Adam," 34th International Symposium on Space Technology and Science, 2023-d-43, Jun 2023.
- 9. S. Yamaguchi, N. Hiraiwa, M. Bando, and S. Hokamoto: "Feasibility Study of the Comet Observation Mission Using Sun-Earth-Moon Four-Body Problem" (in Japanese), JSASS-2022-S009, Annual Meeting of Japan Society for Aeronautical and Space Science Western Branch, Nov. 2022.
- 10. K. Ikeda, N. Hiraiwa, M. Bando, and S. Hokamoto: "Design of Satellite Tour Trajectories Using Poincaré Maps in Multibody Dynamics of Jovian System" (in Japanese), P051, 66th Space Sciences and Technology Conference, Nov. 2022.
- 11. S. Hirayama, N. Hiraiwa, M. Bando, and S. Hokamoto: "Trajectory Optimization by Stochastic Gradient Descent Algorithm Adam" (in Japanese), P053, 66th Space Sciences and Technology Conference, Nov. 2022.
- 12. S. Yamaguchi, N. Hiraiwa, M. Bando, and S. Hokamoto: "Design of Transfer Trajectories to Comets for Nano-Satellites Based on the Concept of Comet Interceptor" (in Japanese), P057, 66th Space Sciences and Technology Conference, Nov. 2022.
- 13. A. Chikusa, N. Hiraiwa, M. Bando, and S. Hokamoto: "Analysis of Mars Aerocapture Trajectories Considering Disturbances for Guidance System" (in Japanese), P061, 66th Space Sciences and Technology Conference, Nov. 2022.
- 14. K. Ikeda, N. Hiraiwa, M. Bando, and S. Hokamoto: "Design of Satellites Tours Using Periapsis Poincaré Map in Multibody Dynamics of Jovian System," C1.8.8, 73rd International Astronautical Congress, Sep. 2022.
- 15. K. Ikeda, N. Hiraiwa, M. Bando, and S. Hokamoto: "Design of Low Energy Transfer Trajectories from Earth to Europa with Ballistic Capture," 33rd International Symposium on Space Technology and Science, 2022-d-23, Mar. 2022.
- 16. K. Ikeda, N. Hiraiwa, M. Bando, and S. Hokamoto: "Design of Low Energy Transfer Trajectories to Europa Using Periapsis Poincaré Map" (in Japanese), P36, 65th Space Sciences and Technology Conference, Nov. 2021.

Seminars and Talks

- 1. N. Hiraiwa: "Dynamical Structures of Lobe Dynamics for Spacecraft Trajectory Design," at *Dynamics Days Sapporo* 2024, Dec. 2024.
- 2. N. Hiraiwa: "Design of Chaotic Transfers Based on Lobe Dynamics," at 33rd Workshop on JAXA Astrodynamics and Flight Mechanics, Jul. 2023.
- 3. N. Hiraiwa: "Analysis of Chaotic Trajectories Based on Lobe Dynamics," at 32nd Workshop on JAXA Astrodynamics and Flight Mechanics, Jul. 2022.

HONORS and AWARDS

Individual

Chiyoda Foundation Scholarship

Dean's Award for Freshman (Top 2% GPA), Kyushu University

Apr. 2018 - Mar. 2020

Jul. 2017

Fellowships

Kyushu University SPRING program, from Japan Science and Technology Agency [URL]

• Total support up to ~\$16,000/year

Apr. 2022 - Mar. 2023

JSPS Research Fellowships for Young Scientists (DC2), from Japan Society for the Promotion of Science [URL]

• Total support up to ~\$16,000/year

Apr. 2023 - Mar. 2025

Research Grants

Grants-in-Aid by SPRING program (**FY2022**), from Japan Science and Technology Agency. Total budget is up to ~\$3,400/year.

Grants-in-Aid for Scientific Research <KAKENHI> (**FY2023, 2024**), from Japan Society for the Promotion of Science. Total budget is up to ~\$12,000/2 year.

PRESS RELEASES

• Kyushu University and Hokkaido University: "Successfully developed a novel methodology of spacecraft trajectory design based on chaotic orbits in the Earth–Moon system" (in Japanese, [URL]), based on the paper Phys. Rev. Res. 6, L022046 (2024), May 30th, 2024.

SKILLS

Language: Japanese (native), English (fluent)

Programming: MATLAB (proficient), C/C++ (intermediate), LATEX(proficient)